Radiometric dating method holocene samples

Among the best-known techniques are radiocarbon dating, potassium–argon dating and uranium–lead dating.

By allowing the establishment of geological timescales, it provides a significant source of information about the ages of fossils and the deduced rates of evolutionary change.

The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate.

This normally involves isotope-ratio mass spectrometry. The precision of a dating method depends in part on the half-life of the radioactive isotope involved.

The temperature at which this happens is known as the closure temperature or blocking temperature and is specific to a particular material and isotopic system.

These temperatures are experimentally determined in the lab by artificially resetting sample minerals using a high-temperature furnace.

It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of alteration.For instance, carbon-14 has a half-life of 5,730 years.After an organism has been dead for 60,000 years, so little carbon-14 is left that accurate dating cannot be established.In these cases, usually the half-life of interest in radiometric dating is the longest one in the chain, which is the rate-limiting factor in the ultimate transformation of the radioactive nuclide into its stable daughter.Isotopic systems that have been exploited for radiometric dating have half-lives ranging from only about 10 years (e.g., tritium) to over 100 billion years (e.g., samarium-147).

Leave a Reply